4,883 research outputs found

    A general creation-annihilation model with absorbing states

    Full text link
    A one dimensional non-equilibrium stochastic model is proposed where each site of the lattice is occupied by a particle, which may be of type A or B. The time evolution of the model occurs through three processes: autocatalytic generation of A and B particles and spontaneous conversion A to B. The two-parameter phase diagram of the model is obtained in one- and two-site mean field approximations, as well as through numerical simulations and exact solution of finite systems extrapolated to the thermodynamic limit. A continuous line of transitions between an active and an absorbing phase is found. This critical line starts at a point where the model is equivalent to the contact process and ends at a point which corresponds to the voter model, where two absorbing states coexist. Thus, the critical line ends at a point where the transition is discontinuous. Estimates of critical exponents are obtained through the simulations and finite-size-scaling extrapolations, and the crossover between universality classes as the voter model transition is approached is studied.Comment: 9 pages and 17 figure

    A SyR and IPM machine design methodology assisted by optimization algorithms

    Get PDF
    The design optimization of synchronous reluctance (SyR) machine and its extension to internal permanent magnet (IPM) motors for wide speed ranges is considered in this paper by means of a Finite Element Analysis-based multi-objective genetic algorithm (MOGA). The paper is focused on the rotor design, that is controversial key aspect of the design of high saliency SyR and IPM machines, due to the difficult modeling dominated by magnetic saturation. A three step procedure is presented, to obtain a starting SyR design with the optimal torque versus torque ripple compromise and then properly include PMs into the SyR geometry, given the desired constant power speed range of the final IPM machine. The designed rotors have been extensively analyzed by computer simulations and two SyR prototypes have been realized to demonstrate the feasibility of the design procedur

    Spatial prioritisation of revegetation sites for dryland salinity management: an analytical framework using GIS

    Get PDF
    [Abstract]: To address the lack of analytical and modelling techniques in prioritising revegetation sites for dryland salinity management, a case study of the Hodgson Creek catchment in Queensland, Australia, was conducted. An analytical framework was developed, incorporating the use of spatial datasets (Landsat 7 image, DEM, soil map, and salinity map) which were processed using image processing techniques and a geographic information system (GIS). Revegetation sites were mapped and their priority determined based on recharge area, land use/cover and sub-catchment salinity. The analytical framework presented here enhances the systematic use of land information, widens the scope for scenario testing, and improves the testing of alternative revegetation options. The spatial patterns of revegetation sites could provide an additional set of information relevant in the design of revegetation strategies

    Stochastic approach to diffusion inside the chaotic layer of a resonance

    Get PDF
    We model chaotic diffusion, in a symplectic 4D map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus in the diffusion process in the action, II, of the FR, obtaining a semi--numerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case the numerically computed probability density function for the action II is well interpolated by the solution of a Fokker-Planck (F-P) equation, whereas it presents a non--constant time delay respect to the concomitant F-P solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in Celestial Mechanics and Accelerator Physics.Comment: This is the author's version of a work that was submitted to Physical Review E (http://pre.aps.org

    Analysis of a chemo-repulsion model with nonlinear production: The continuous problem and unconditionally energy stable fully discrete schemes

    Get PDF
    We consider the following repulsive-productive chemotaxis model: Let p∈(1,2)p\in (1,2), find u≄0u \geq 0, the cell density, and v≄0v \geq 0, the chemical concentration, satisfying \begin{equation}\label{C5:Am} \left\{ \begin{array} [c]{lll} \partial_t u - \Delta u - \nabla\cdot (u\nabla v)=0 \ \ \mbox{in}\ \Omega,\ t>0,\\ \partial_t v - \Delta v + v = u^p \ \ \mbox{in}\ \Omega,\ t>0, \end{array} \right. \end{equation} in a bounded domain Ω⊆Rd\Omega\subseteq \mathbb{R}^d, d=2,3d=2,3. By using a regularization technique, we prove the existence of solutions of this problem. Moreover, we propose three fully discrete Finite Element (FE) nonlinear approximations, where the first one is defined in the variables (u,v)(u,v), and the second and third ones by introducing σ=∇v{\boldsymbol\sigma}=\nabla v as an auxiliary variable. We prove some unconditional properties such as mass-conservation, energy-stability and solvability of the schemes. Finally, we compare the behavior of the schemes throughout several numerical simulations and give some conclusions.Comment: arXiv admin note: substantial text overlap with arXiv:1807.0111

    A Formal Approach to Exploiting Multi-Stage Attacks based on File-System Vulnerabilities of Web Applications (Extended Version)

    Full text link
    Web applications require access to the file-system for many different tasks. When analyzing the security of a web application, secu- rity analysts should thus consider the impact that file-system operations have on the security of the whole application. Moreover, the analysis should take into consideration how file-system vulnerabilities might in- teract with other vulnerabilities leading an attacker to breach into the web application. In this paper, we first propose a classification of file- system vulnerabilities, and then, based on this classification, we present a formal approach that allows one to exploit file-system vulnerabilities. We give a formal representation of web applications, databases and file- systems, and show how to reason about file-system vulnerabilities. We also show how to combine file-system vulnerabilities and SQL-Injection vulnerabilities for the identification of complex, multi-stage attacks. We have developed an automatic tool that implements our approach and we show its efficiency by discussing several real-world case studies, which are witness to the fact that our tool can generate, and exploit, complex attacks that, to the best of our knowledge, no other state-of-the-art-tool for the security of web applications can find

    La VisiĂłn del Mundo en los Cuentos de Enrique Anderson Imbert

    Get PDF
    • 

    corecore